Home
Generals
Unit converter
Periodic table
Molecular weight
Properties
Hydrocarbon properties
Steam properties
Psychrometric properties
Fuel gas LHV
Flue gas enthalpy
Dynamics
Equation of state
Flow convert (mass - volume)
Energy to emission
Flow rate
Darcy friction factor
Mean pressure
Flow compensation
Orifice sizing
Bernoulli equation
Steam pinhone
Control valve CV
Sizing
LMTD
Flash steam
Pump BHP
Performance
Cooling tower capability
Heater efficiency
Compressor efficiency
Turbine efficiency
About
ID
Name
Title
Keyword
Description
<div style="color: rgb(68, 68, 68); font-family: Consolas; font-size: 15px;"><div>LMTD stands for Logarithmic Mean Temperature Difference, which is a method of calculating the arithmetic mean temperature difference in a heat exchanger. The LMTD is calculated using the following formula:</div><div><br><h2 style="margin: 0px; position: relative; font-variant-numeric: normal; font-variant-east-asian: normal; font-variant-alternates: normal; font-kerning: auto; font-optical-sizing: auto; font-feature-settings: normal; font-variation-settings: normal; font-variant-position: normal; font-weight: bold; font-stretch: normal; font-size: 14px; line-height: normal; font-family: "Trebuchet MS", Trebuchet, sans-serif; color: rgb(0, 0, 0);"><span style="font-family: Consolas;">Formula of LMTD</span></h2></div><div><br>LMTD = (ΔT1-ΔT2) / ln (ΔT1/ΔT2)</div><div><br>Here, ΔT1 is the temperature difference between the hot and cold fluids on one side of the heat exchanger, and ΔT2 is the temperature difference on the other side. This formula is used to calculate the heat transfer surface area of a heat exchanger.</div><div><br>There are two types of heat exchangers such as parallel-flow and counter-flow heat exchangers that differ in the direction of fluid flow. In a parallel-flow heat exchanger, the hot and cold fluids enter at the same end, flow in the same direction, and leave at the same end. In contrast, in a counter-flow heat exchanger, the fluids enter at opposite ends, flow in opposite directions, and leave at opposite ends.</div><div><br>The counter-flow heat exchanger is more efficient than the parallel-flow heat exchanger because it allows for a greater temperature difference between the hot and cold fluids. This results in a higher rate of heat transfer and a smaller heat exchanger size.<br><br><br><br><div class="separator" style="clear: both;"><a href="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg4PGzQhgJIRVYD_Jxy5w4dsGBQgd4kVz1ElZvSnV_UgJLtnf3sMDMS0YLFCt7gdBzAq-OF2Gxyxr_gl4QEOuxWtzwY8wgQkxGRhW7iY2USszgVL45ZBrEdPlrw130xdz6C-q2Yv_fgF8yhcLRDU2zFih8h9HR11wZSmF8_SPuMSOHfbTEs8YFbEcb52OY/s608/lmtdflow.png" imageanchor="1" style="color: rgb(209, 102, 63); margin-left: 1em; margin-right: 1em;"><img border="0" data-original-height="267" data-original-width="608" height="176" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg4PGzQhgJIRVYD_Jxy5w4dsGBQgd4kVz1ElZvSnV_UgJLtnf3sMDMS0YLFCt7gdBzAq-OF2Gxyxr_gl4QEOuxWtzwY8wgQkxGRhW7iY2USszgVL45ZBrEdPlrw130xdz6C-q2Yv_fgF8yhcLRDU2zFih8h9HR11wZSmF8_SPuMSOHfbTEs8YFbEcb52OY/w400-h176/lmtdflow.png" width="400" style="border-width: initial; border-style: none; position: relative;"></a></div><br><div class="separator" style="clear: both;"><br></div><br>For parallel flow in tubular heat exchangers</div><div>LMTD = ((Thi-Tci)-(Tho-Tco))/ln((Thi-Tci)/(Tho-Tco))</div><div><br>For counterflow in tubular heat exchangers<br>LMTD = ((Tho-Tci)-(Thi-Tco))/ln((Tho-Tci)/(Thi-Tco)) <br><br></div><div>Where,<br>LMTD = log mean temperature difference (degC or degF)<br>Thi = inlet temperature of the hot fluid (degC or degF)<br>Tho = outlet temperature of the hot fluid (degC or degF)<br>Tci = inlet temperature of the cold fluid (degC or degF)<br>Tco = outlet temperature of the cold fluid (degC or degF)<br><br><h2 style="margin: 0px; position: relative; font-variant-numeric: normal; font-variant-east-asian: normal; font-variant-alternates: normal; font-kerning: auto; font-optical-sizing: auto; font-feature-settings: normal; font-variation-settings: normal; font-variant-position: normal; font-weight: bold; font-stretch: normal; font-size: 14px; line-height: normal; font-family: "Trebuchet MS", Trebuchet, sans-serif; color: rgb(0, 0, 0);"><span style="font-family: Consolas;">Python code</span></h2></div><div><br>LMTD calculation in the heat exchanger is coded in Python as follows.</div><div><br><span style="color: rgb(43, 0, 254);">import math<br>def lmtd(Thi, Tho, Tci, Tco):<br> if min(Thi, Tho) > max(Tci, Tco):<br> dt = (Thi-Tci) if (Thi-Tci) == (Tho-Tco) else ((Thi-Tci)-(Tho-Tco))/math.log((Thi-Tci)/(Tho-Tco))<br> else:<br> dt = (Thi-Tci) if (Tho-Tci) == (Thi-Tco) else ((Tho-Tci)-(Thi-Tco))/math.log((Tho-Tci)/(Thi-Tco))<br> return dt<br>print("parallel flow case = ", lmtd(150, 120, 50, 80))<br>print("counter flow case = ", lmtd(180, 130, 100, 120))</span><br><br>Here, Thi, Tho, Tci and Tco are the temperatures of the hot and cold fluids at the inlet and outlet of the heat exchanger. The function lmtd calculates the LMTD using the formula (ΔT1-ΔT2)/ln(ΔT1/ΔT2) and returns the result.</div><div><br><span style="color: rgb(43, 0, 254);">parallel flow case = 65.48<br>counter flow case = 33.66</span></div><div><span style="color: rgb(43, 0, 254);"><br></span></div></div>