Home
Generals
Unit converter
Periodic table
Molecular weight
Properties
Hydrocarbon properties
Steam properties
Psychrometric properties
Fuel gas LHV
Flue gas enthalpy
Dynamics
Equation of state
Flow convert (mass - volume)
Energy to emission
Flow rate
Darcy friction factor
Mean pressure
Flow compensation
Orifice sizing
Bernoulli equation
Steam pinhone
Control valve CV
Sizing
LMTD
Flash steam
Pump BHP
Performance
Cooling tower capability
Heater efficiency
Compressor efficiency
Turbine efficiency
About
ID
Name
Title
Keyword
Description
<div><div><span style="font-family: Consolas;">Motor Challenge is a partnership program between the U.S. Department of Energy and the nation’s industries. The program is committed to increasing the use of industrial energy-efficient electric motor systems and related technologies.</span></div><div><span style="font-family: Consolas;"><br>This program is wholly funded by the U.S. Department of Energy and is dedicated to helping industry increase its competitive edge, while conserving the nation’s energy resources and enhancing environmental quality.</span></div><div><span style="font-family: Consolas;"><br>Over half of all electrical energy consumed in the United States is used by electric motors. Improving the efficiency of electric motors and the equipment they drive can save energy, reduce operating costs, and improve our nation’s productivity.</span></div><div><span style="font-family: Consolas;"><br>Energy efficiency should be a major consideration when you purchase or rewind a motor. The annual energy cost of running a motor is usually many times greater than its initial purchase price. For example, even at the relatively low energy rate of $0.04/kWh, a typical 20-horsepower (hp) continuously running motor uses almost $6,000 worth of electricity annually, about six times its initial purchase price.</span></div><div><span style="font-family: Consolas;"><br>Select a new energy-efficient motor under any of the following conditions:</span><ul style="padding: 0px 2.5em; margin: 0.5em 0px; line-height: 1.4;"><li style="padding: 0px; margin: 0px 0px 0.25em;"><span style="font-family: Consolas;">The motor is less than 40 hp.</span></li></ul><ul style="padding: 0px 2.5em; margin: 0.5em 0px; line-height: 1.4;"><li style="padding: 0px; margin: 0px 0px 0.25em;"><span style="font-family: Consolas;">An energy-efficient motor is recommended according to Table 3.</span></li></ul><ul style="padding: 0px 2.5em; margin: 0.5em 0px; line-height: 1.4;"><li style="padding: 0px; margin: 0px 0px 0.25em;"><span style="font-family: Consolas;">The cost of the rewind exceeds 65% of the price of a new motor.</span></li></ul><ul style="padding: 0px 2.5em; margin: 0.5em 0px; line-height: 1.4;"><li style="padding: 0px; margin: 0px 0px 0.25em;"><span style="font-family: Consolas;">The motor was rewound before 1980 year</span></li></ul><span style="font-family: Consolas;">Survey your motors. Gather nameplate information and obtain field measurements (voltage, amperage, power factor, operating speed) under typical operating conditions. Initially focus on motors that exceed minimum size and operating duration criteria. Typical selection criteria include:</span><ul style="padding: 0px 2.5em; margin: 0.5em 0px; line-height: 1.4;"><li style="padding: 0px; margin: 0px 0px 0.25em;"><span style="font-family: Consolas;">Three-phase NEMA design B motor</span></li></ul><ul style="padding: 0px 2.5em; margin: 0.5em 0px; line-height: 1.4;"><li style="padding: 0px; margin: 0px 0px 0.25em;"><span style="font-family: Consolas;">Non-specialty motor</span></li></ul><ul style="padding: 0px 2.5em; margin: 0.5em 0px; line-height: 1.4;"><li style="padding: 0px; margin: 0px 0px 0.25em;"><span style="font-family: Consolas;">10 to 600 hp</span></li></ul><ul style="padding: 0px 2.5em; margin: 0.5em 0px; line-height: 1.4;"><li style="padding: 0px; margin: 0px 0px 0.25em;"><span style="font-family: Consolas;">At least 2000 hours per year of operation</span></li></ul><ul style="padding: 0px 2.5em; margin: 0.5em 0px; line-height: 1.4;"><li style="padding: 0px; margin: 0px 0px 0.25em;"><span style="font-family: Consolas;">Constant load (not intermittent, cyclic, or fluctuating</span></li></ul><ul style="padding: 0px 2.5em; margin: 0.5em 0px; line-height: 1.4;"><li style="padding: 0px; margin: 0px 0px 0.25em;"><span style="font-family: Consolas;">Older or rewound standard efficiency motors</span></li></ul><ul style="padding: 0px 2.5em; margin: 0.5em 0px; line-height: 1.4;"><li style="padding: 0px; margin: 0px 0px 0.25em;"><span style="font-family: Consolas;">Easy access</span></li></ul><ul style="padding: 0px 2.5em; margin: 0.5em 0px; line-height: 1.4;"><li style="padding: 0px; margin: 0px 0px 0.25em;"><span style="font-family: Consolas;">Readable nameplate.</span></li></ul><b><span style="font-family: Consolas;">BHP = (ρ*(Q/3600)*H)/(102*η)</span></b></div><p></p><p></p><p></p><span style="font-family: Consolas;"><br>BHP : Pump Power [Kw]<br>ρ : Fluid Density [kg/m3]<br>Q : Flow Rate [m3/hr]<br>H : Total Diff' Head [m]<br>η : Pump Efficiency [%]<br><br>Design Condition<br>ρ = 1,126 kg/m3 <br>Q = 173.0 m3/hr<br>P1 = 0.6 kgf/cm2g<br>P2 = 14.4 kgf/cm2g<br>H = (14.4-0.6)*10/(1126/1000) = 122.6 m<br>η = 66.5%<br>BHP = (1126*(173/3600)*122.6)/(102*66.5/100) = 97.8 kW<br><br>Actual Condition<br>ρ = 1,126 kg/m3<br>Q = 84.4 m3/hr<br>P1 = 0.6 kgf/cm2g<br>P2 = 14.6 kgf/cm2g<br>H = (14.6-0.6)*10/(1126/1000) = 124.3 m<br>n = 53.0%<br>BHP = (1126*(84.4/3600)*124.3)/(102*53.0/100) = 60.7 kW<br><br><b>Load Factor = Pump Operation BHP / Pump Rated BHP</b><br> = 60.7 kW /97.8 kW = 62%<br><b>Pump Imbalance = [(Actual Q * Actual H) / (Design Q * Design H) -1] * 100%</b><br> = ((84.4*124.3)/(173*122.6)-1)) = -51%<br><b>Flow Ratio = Actual Q / Design Q</b></span><div><span style="font-family: Consolas;"> = 84.4 m3/hr / 173 m3/hr = 49%<br><b>Motor Load = Operation P / Rated P</b></span></div><div><span style="font-family: Consolas;"> = 63.8 kW / 110 kW = 58%</span><p><span style="font-family: Consolas;"><br></span></p><p><span style="font-family: Consolas;">If the calculation results of the four parameters calculated above meet the conditions below, energy engineer should consider an investment project to save energy consumption.</span></p><span style="font-family: Consolas;">Pump Imbalance: Review below -20%<br>Pressure Ratio: Review when exceeding 130%<br>Flow Ratio: Review when below 70%<br>Motor Load: Review when below 40%</span><div><br></div><div><br style="color: rgb(68, 68, 68); font-family: Consolas; font-size: 15px;"></div></div></div>