Home
Generals
Unit converter
Periodic table
Molecular weight
Properties
Hydrocarbon properties
Steam properties
Psychrometric properties
Fuel gas LHV
Flue gas enthalpy
Dynamics
Equation of state
Flow convert (mass - volume)
Energy to emission
Flow rate
Darcy friction factor
Mean pressure
Flow compensation
Orifice sizing
Bernoulli equation
Steam pinhone
Control valve CV
Sizing
LMTD
Flash steam
Pump BHP
Performance
Cooling tower capability
Heater efficiency
Compressor efficiency
Turbine efficiency
About
ID
Name
Title
Keyword
Description
<div style="color: rgb(68, 68, 68); font-family: Consolas; font-size: 15px;"><div>Equation for mean pressure for steady flow in a gas pipe at pressures below 1000 psia and temperatures above 60°F, the change in compressibility factor z with Pressure is approximately linear. Therefore, the compressibility factor z can be expressed as a constant, so the average pressure of the gas fluid can be calculated as follows.</div><div><br><b>Pm = 2/3 * (P1^3 - P2^3)/(P1^2 - P2^2)</b></div><div><b><br></b><span style="color: rgb(43, 0, 254);">def pmean(p1, p2):</span></div><div><span style="color: rgb(43, 0, 254);"><br></span><span style="color: rgb(43, 0, 254);"> return 2/3*(pow(p1, 3) - pow(p2, 3))/( pow(p1, 2) - pow(p2, 2))</span></div><p><span style="color: rgb(43, 0, 254);"><br>print("Gas mean pressure of 120 psia and 100 psia = ", pmean(120, 100))</span></p><p>When run the code, you will receive the following results.</p><p><span style="color: rgb(43, 0, 254);">Gas mean pressure of 120 psia and 100 psia = 111.429</span></p><div><br></div></div>