Home
Generals
Unit converter
Periodic table
Molecular weight
Properties
Hydrocarbon properties
Steam properties
Psychrometric properties
Fuel gas LHV
Flue gas enthalpy
Dynamics
Equation of state
Flow convert (mass - volume)
Energy to emission
Flow rate
Darcy friction factor
Mean pressure
Flow compensation
Orifice sizing
Bernoulli equation
Steam pinhone
Control valve CV
Sizing
LMTD
Flash steam
Pump BHP
Performance
Cooling tower capability
Heater efficiency
Compressor efficiency
Turbine efficiency
About
ID
Name
Title
Keyword
Description
<p style="color: rgb(68, 68, 68); font-family: Consolas; font-size: 15px;">The heat loss method disused in ASME PTC 4.1 may be used for evaluating the efficiency of steam generators. For quick estimates of oil and natural gas fired steam generators, however, the following equations may be used. These equations were arrived at by the author after performing several calculations.</p><p style="color: rgb(68, 68, 68); font-family: Consolas; font-size: 15px;">1. Natural gas </p><p style="color: rgb(68, 68, 68); font-family: Consolas; font-size: 15px;"><b><span style="color: rgb(128, 1, 128);">Efficiency (%, HHV) = 89.4 - (0.001123 + 0.0195 * EA)*(Tg - Ta)<br>Efficiency (%, LHV) = 99.0 - (0.001244 + 0.0216 * EA)*(Tg - Ta)<br></span></b><br>Tg = exit gas temperatures, degF<br>Ta = reference air temperatures, degF<br>EA = excess air, EA = K * 21/(21-O2), K = 0.98 for natural gas <br></p><p style="color: rgb(68, 68, 68); font-family: Consolas; font-size: 15px;">2. Fuel Oil</p><p style="color: rgb(68, 68, 68); font-family: Consolas; font-size: 15px;"><b><span style="color: rgb(128, 1, 128);">Efficiency (%, HHV) = 92.9-(0.001298 + 0.0195 * EA) * (Tg-Ta) <br>Efficiency (%, LHV) = 99.0-(0.001383 + 0.0203 * EA) * (Tg-Ta) <br></span></b><br>Tg = exit gas temperatures, degF<br>Ta = reference air temperatures, degF<br>EA = excess air, EA = K * 21/(21-O2), K = 1.00 for fuel oil</p><p style="color: rgb(68, 68, 68); font-family: Consolas; font-size: 15px;">Example-1:</p><p style="color: rgb(68, 68, 68); font-family: Consolas; font-size: 15px;">A natural gas fired boiler with 15% excess air has an exit gas temperature of 380 degF, ambient = 90 degF. Determine efficiency on LHV basis. </p><p style="color: rgb(68, 68, 68); font-family: Consolas; font-size: 15px;">EA = 1.15<br>Efficiency (%, LHV) = 99.0 - (0.001244 + 0.0216 * EA)*(Tg - Ta)<br>Efficiency (%, LHV) = 99.0 - (0.001244 + 0.0216 * 1.15)*(380 - 90) = 91.4%</p><p style="color: rgb(68, 68, 68); font-family: Consolas; font-size: 15px;">Example-2:</p><p style="color: rgb(68, 68, 68); font-family: Consolas; font-size: 15px;">A natural gas fired boiler with 3% excess oxygen has an exit gas temperature of 350 degF, ambient = 85 degF. Determine efficiency on LHV basis. </p><p style=""><font color="#444444" face="Consolas"><span style="font-size: 15px;">EA = K * 21/(21-O2) = 0.98 * 21/(21-3) = 1.143<br></span></font><span style="font-size: 15px; color: rgb(68, 68, 68); font-family: Consolas;">Efficiency (%, LHV) = 99.0 - (0.001244 + 0.0216 * EA)*(Tg - Ta)<br></span><span style="font-size: 15px; color: rgb(68, 68, 68); font-family: Consolas;">Efficiency (%, LHV) = 99.0 - (0.001244 + 0.0216 * 1.143)*(350 - 85) = 92.1%</span></p><div style="color: rgb(68, 68, 68); font-family: Consolas; font-size: 15px;"><br></div>