Home
Generals
Unit converter
Periodic table
Molecular weight
Properties
Hydrocarbon properties
Steam properties
Psychrometric properties
Fuel gas LHV
Flue gas enthalpy
Dynamics
Equation of state
Flow convert (mass - volume)
Energy to emission
Flow rate
Darcy friction factor
Mean pressure
Flow compensation
Orifice sizing
Bernoulli equation
Steam pinhone
Control valve CV
Sizing
LMTD
Flash steam
Pump BHP
Performance
Cooling tower capability
Heater efficiency
Compressor efficiency
Turbine efficiency
About
ID
Name
Title
Keyword
Description
<p style="color: rgb(68, 68, 68); font-family: Consolas; font-size: 15px;">Darcy friction factor f as a function of Reynolds number Re and pipe relative roughness ε / d, fitting the data of experimental studies of turbulent flow in smooth and rough pipes.</p><p style="color: rgb(68, 68, 68); font-family: Consolas; font-size: 15px;">The equation can be used to (alliteratively) solve for the Darcy–Weisbach friction factor f.</p><p style="color: rgb(68, 68, 68); font-family: Consolas; font-size: 15px;">For a conduit flowing completely full of fluid at Reynolds numbers greater than 4000, it is expressed as:</p><p style="color: rgb(68, 68, 68); font-family: Consolas; font-size: 15px;"><span style="color: rgb(128, 1, 128);"><b>1/√(f) = -2*log((e / d) / 3.7 + 2.51/(Nre * √(f))</b></span></p><p style="color: rgb(68, 68, 68); font-family: Consolas; font-size: 15px;">As can see from the formula, simple calculation is not possible, so user should use iterative calculations or a solver to find the value of f that satisfies the formula.</p><p style="color: rgb(68, 68, 68); font-family: Consolas; font-size: 15px;">Pipe Material Commercial Steel, e = 0.05<br>Pipe Internal Diameter (d, mm) = 25<br>Reynold's Number (Re) = 100000<br>Relative Roughness (ε/D) 0.002<br>Friction factor (f)<span style="white-space: pre;"> </span>0.023 <span style="white-space: pre;"> </span></p><div style="color: rgb(68, 68, 68); font-family: Consolas; font-size: 15px;"><br></div><div class="separator" style="color: rgb(68, 68, 68); font-family: Consolas; font-size: 15px; clear: both;"><a href="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEib5YZRXdQ0fg06bmbzQLfJLJPkGFXt53M65d8REJ0zQezFde-EPxnWRDvDk1Wiyl_2vGwybfGPbwTVOraN_bHvKBBvmfs023NxRywEd8rmrzSqwlpu1ZOHcgPPmuwZLexpAyl2mRp3XMHFOibLT35s3bEmoCdqI7eFvrD9DVcpqri08W0_Ua5uZl6-Lc4/s992/moodyffdiagram.png" style="color: rgb(209, 102, 63); margin-left: 1em; margin-right: 1em;"><img border="0" data-original-height="610" data-original-width="992" height="394" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEib5YZRXdQ0fg06bmbzQLfJLJPkGFXt53M65d8REJ0zQezFde-EPxnWRDvDk1Wiyl_2vGwybfGPbwTVOraN_bHvKBBvmfs023NxRywEd8rmrzSqwlpu1ZOHcgPPmuwZLexpAyl2mRp3XMHFOibLT35s3bEmoCdqI7eFvrD9DVcpqri08W0_Ua5uZl6-Lc4/w640-h394/moodyffdiagram.png" width="640" style="border-width: initial; border-style: none; position: relative;"></a></div><p style="color: rgb(68, 68, 68); font-family: Consolas; font-size: 15px;"><br></p><div class="separator" style="color: rgb(68, 68, 68); font-family: Consolas; font-size: 15px; clear: both;"><a href="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhbjGh3iGedJzK7Z8B7h6AxGMqBwSMsEuMdTjIEn_9MkN5OX_EIvdLQHRbYb5AlhLgY-eECdjdW5_7n2lCcciLTDECsBf2hNQZloYMRyHveOMgQBaAnHOh_A6g0QYUBCr7UX02MxBNAYsXzaWEaQoGyR8DO1u9U73d-2XKxIjh5sWLk0e6O7zA7a-ZrpLc/s331/darcyfrictionfactor.png" style="color: rgb(209, 102, 63); margin-left: 1em; margin-right: 1em;"><img border="0" data-original-height="72" data-original-width="331" height="62" src="https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhbjGh3iGedJzK7Z8B7h6AxGMqBwSMsEuMdTjIEn_9MkN5OX_EIvdLQHRbYb5AlhLgY-eECdjdW5_7n2lCcciLTDECsBf2hNQZloYMRyHveOMgQBaAnHOh_A6g0QYUBCr7UX02MxBNAYsXzaWEaQoGyR8DO1u9U73d-2XKxIjh5sWLk0e6O7zA7a-ZrpLc/w282-h62/darcyfrictionfactor.png" width="282" style="border-width: initial; border-style: none; position: relative;"></a></div><div style="color: rgb(68, 68, 68); font-family: Consolas; font-size: 15px;"><br><p><span style="color: rgb(43, 0, 254);">import math<br></span><span style="color: rgb(43, 0, 254);">import numpy as np</span></p><span style="color: rgb(43, 0, 254);">def frictionfactor(piping, d, Nre):<br><br> piping = "Commercial Steel"<br> if piping == "Commercial Steel": e = 0.05<br> if piping == "Cast Iron": e = 0.26<br> if piping == "Galvanized Iron": e = 0.15<br> if piping == "Asphalted Cast Iron": e = 0.12<br> if piping == "Drawn Tubing": e = 0.0015<br><br> if (Nre > 1 and Nre <= 2000):<br> <br> f_result = 64 / Nre<br><br> elif Nre > 4000:<br><br> delta_result = 1<br> delta = 1<br><br> for f in np.arange(0.001, 0.1, 0.001):<br> lhs = 1 / math.sqrt(f)<br> rhs = -2 * math.log10((e / d) / 3.7 + 2.51 / (Nre * math.sqrt(f)))<br> delta = abs(lhs - rhs)<br> if (delta < delta_result):<br> delta_result = delta<br> f_result = f<br> else:<br> pass<br> <br> return f_result<br><br>f = frictionfactor("Commercial Steel", 25, 10000)<br>print("darcy friction factor = ", f)</span><p>When run the code, you will receive the following results.</p><p><span style="color: rgb(43, 0, 254);">darcy friction factor = 0.034</span></p><p><span style="color: rgb(43, 0, 254);"><br></span></p></div>