Home
Generals
Unit converter
Periodic table
Molecular weight
Properties
Hydrocarbon properties
Steam properties
Psychrometric properties
Fuel gas LHV
Flue gas enthalpy
Dynamics
Equation of state
Flow convert (mass - volume)
Energy to emission
Flow rate
Darcy friction factor
Mean pressure
Flow compensation
Orifice sizing
Bernoulli equation
Steam pinhone
Control valve CV
Sizing
LMTD
Flash steam
Pump BHP
Performance
Cooling tower capability
Heater efficiency
Compressor efficiency
Turbine efficiency
About
ID
Name
Title
Keyword
Description
<div style="color: rgb(68, 68, 68); font-family: Consolas; font-size: 15px;"><div>Polytropic efficiency is a measure of the efficiency of a compressor. It is defined as the ratio of the actual work done by the compressor to the work that would be done if the compression process were isentropic (reversible and adiabatic). The polytropic efficiency of a compressor is always less than its isentropic efficiency.</div><div><br></div><h2 style="margin: 0px; position: relative; font-variant-numeric: normal; font-variant-east-asian: normal; font-variant-alternates: normal; font-kerning: auto; font-optical-sizing: auto; font-feature-settings: normal; font-variation-settings: normal; font-variant-position: normal; font-weight: bold; font-stretch: normal; font-size: 14px; line-height: normal; font-family: "Trebuchet MS", Trebuchet, sans-serif; color: rgb(0, 0, 0);"><span style="font-family: Consolas;">Formula of Compressor polytropic efficiency</span></h2><div><br>The polytropic efficiency of a compressor can be calculated using the following formula:</div><div><br><b>Po/Pi = (To/Ti)^(n/(n-1))<br></b><b>n/(n-1) = log(Po/Pi)/log(To/Ti)<br></b><b>η = (n/(n-1))/(k/(k-1))<br></b><b>η = log(Po/Pi)/log(To/Ti)/(k/(k-1))</b></div><div><b><br></b>where η is the polytropic efficiency, Pi and Ti are the inlet pressure and temperature, Po and To are the outlet pressure and temperature, and k is the specific heat ratio of the gas.</div><div><br>η : polytropic efficiency<br>Po : outlet pressure (psig)<br>Ti : inlet temperature (degF)<br>To : outlet temperature (degF)<br>n : compression ratio<br>k : specific heat ratio</div><div><br><h2 style="margin: 0px; position: relative; font-variant-numeric: normal; font-variant-east-asian: normal; font-variant-alternates: normal; font-kerning: auto; font-optical-sizing: auto; font-feature-settings: normal; font-variation-settings: normal; font-variant-position: normal; font-weight: bold; font-stretch: normal; font-size: 14px; line-height: normal; font-family: "Trebuchet MS", Trebuchet, sans-serif; color: rgb(0, 0, 0);"><span style="font-family: Consolas;">Python code of Compressor polytropic efficiency</span></h2><div><br></div></div><div>The following Python code is an example of calculating the polytropic efficiency of a compressor when gas introduced at 30 psig, 140 degF is compressed to 125 psig, 350 degF. (specific heat ratio k = 1.243).</div><div><br><span style="color: rgb(43, 0, 254);">import math</span><br></div><div><span style="color: rgb(43, 0, 254);">def compressorpolytropiceff(Pi, Po, Ti, To, k):</span></div><div>Pi : inlet Pressure (psig)<br><p></p><p></p><span style="color: rgb(43, 0, 254);"><br> Po = Po + 14.696<br> Pi = Pi + 14.696<br> To = To + 460<br> Ti = Ti + 460<br> if k == 1 or Pi == 0 or Ti == 0: return -1<br> return math.log(Po/Pi)/math.log(To/Ti) / (k/(k-1)) * 100<br><br>polyeff = compressorpolytropiceff(30, 125, 140, 350, 1.243)<br>print("compressor polytropic efficiency = ", polyeff)</span><p>When run the code, you will receive the following results.</p><p><span style="color: rgb(43, 0, 254);">compressor polytropic efficiency = 74.2%</span></p><p><span style="color: rgb(43, 0, 254);"><br></span></p></div></div>